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Abstract. A universal relation, proposed by StaulTer, Ferer and Wortis, between the scale 
factors in the scaling functions for the free energy and two-spin correlation function, is 
shown to be valid for the spherical model with general pair interactions, provided an 
appropriate definition of the correlation length is adopted. The hypothesis remains valid 
for the spherical model and numerically for the three-dimensional Ising model, when 
extended to include the scale factor for the magnetic field. 

1. Introduction 

Work of the last few years makes it likely that thermodynamic properties and long- 
range correlations of a system in the neighbourhood of a critical point can be described 
in terms of universal scaling functionst. The details of the particular interactions of 
different systems within one universality class are then to be taken into account by 
choosing appropriate scales for the variables in these functions. Recently, Stauffer, 
Ferer and Wortis (1972, Ferer et aJ 1973a, b) proposed, as a hypothesis, a universal 
relation between the scale factors appearing in the scaling functions for the zero field 
f h  = 0) free energy and two-point correlation function. With this relation the number of 
independent scale factors needed for zero field is reduced from three to two. Ferer et a1 
based their hypothesis on the assertion, that the leading singular part of the free energy 
associated with a volume td, where ( is the correlation length, should be a universal 
quantity, independent of the irrelevant details of the Hamiltonian. The hypothesis was 
checked against exact results for the two-dimensional Ising model and against numerical 
data derived from series for the three-dimensional Ising and Heisenberg models, all on 
Bravais lattices. Various experimental data were also examined (see also Stauffer 1973). 
We may note incidentally, that the hypothesis also holds for the Ising model on a 
honeycomb lattice, a case of a non-Bravais lattice (Houtappel 1950, Fisher and Burford 
1967). Aharony (1974) has considered the problem in the framework of the E expansion 
technique of the renormalization group approach (Wilson and Kogut 1974, Wilson and 
Fisher 1972), where E = 4 - d and d is the dimensionality. He verified the hypothesis to 
order E’ for isotropic n-component spin vector systems with short-range interactions, 

However, the limit n + CO can be treated exactly for all dimensions since it cor- 
responds to the spherical model (Berlin and Kac 1952, Stanley 1968, Kac and Thompson 
1971). To state our present result we denote the density of spins by p s ,  the leading singular 

t The universality hypothesis for the scaling functions (Watson 1969, Kadanoff 1971) is strongly supported 
by the results of Wilson’s renormalization group approach (Brezin er al 1973, Fisher and Aharony 1973). 
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part of the free energy per spin, measured in units of kBT, by F, and the correlation length 
by t. Then we will prove that the quantity 

z = P,FStd (1) 

indeed becomes universal as the temperature Tand the reduced magnetic field h approach 
their critical values and zero, respectively. In fact Z depends only on the particular 
locus on which the critical point is approached. This confirms and also extends the basic 
statement of Stauffer et a1 (which was restricted to the locus h = 0). However, to es- 
tablish a precise result the correlation length 4 must be defined in terms of the second 
moment of the two-point correlation function in the case of short-range interactions, but 
in terms of appropriate lower-order moments where there are long-range ferromagnetic 
interactions decaying as r - d - a .  

2. Spherical model free energy 

2.1. General formulation 

We consider a spherical model on a Bravais lattice with an interaction energy J ( 1 - j ) S , .  S j  
between the spins S, and S j  at positions 1 and j ,  with J(r)  = J (  - r). As usual we define 
the Fourier transform 

Then up to analytic terms in the temperature the free energy can be written (Joyce 1972) 

(3) 

The integral here runs over the Brillouin zone, V, is the volume of a primitive unit cell, 
and 

(4) 
For totally ferromagnetic interactions ( J ( I )  2 0) we have 0 < $(k) d 2. 'The saddle- 
point variable x (which is equal to the quantity <, - 1 in Joyce's notation) is related to the 
temperature through the spherical constraint 

( 5 )  

F,(x, h )  = - - J &{~n[x + $(A) ]  - x/[x + $(k)lj - h 2 / ( ~ x ) .  2 (2.y 

$(k) = [ j ( O )  - j (k) ] /J(O) .  

K e j(O)/k,T = R ( x ) + h 2 / K x Z ,  

On introducing the distribution function 

we can write (3) and (6) as 

(7) 

(8) F,(x,  0)  = 4 [ln(x + z )  - x/(x + z ) ]  dW(z), I 
R ( x )  = (x+z)- '  dW(z). (9) I 
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2.2. Expansion for small x 

With a view to elucidating the critical point behaviour (x + 0), we write the derivative of 
Fs(x, 0)  as 

where +(p)  is given by the Mellin transform (Doetsch 1950) 

+ ( p )  = Jm xP- lf(x) dx = Iom dx xP/(x + z ) ~  dW(z). ( 1 1 )  
0 

One must choose Re@) and C so that the integral in (11) converges. An analysis of 
W(z)  gives the condition 0 < Re(p), C < 1 .  We interchange the orders of integration in 
( 1  1 )  and obtain 

+(PI = ~P~(P)/sin(nP)? (12) 
where 

R(p) = J 2 P - l  dW(z) = (l-p)Jo2 W ( Z ) Z ~ - ~ ~ Z + C A W ( Z ~ ) Z P - ~ .  (13) 
i 

Here the AW(zi) are the magnitudes of possible jumps in W(z) at points zi. We can now 
move the path of integration in (10) to the left. At the poles, -pk, of +@) we pick up 
residues of the integrand and so obtain a expansion of f (x) in terms of powers of x with 
increasing real parts of the exponents?, namely, 

f ( x )  = XPk Res(+( - P A  Re(p,) 2 0. (14) 
k 

In order to determine the leading term in this expression we consider the distribution 
W(z) and hence, through (7), the function $(A) which represents the interactions. For 
$(k) we may assume the leading asymptotic behaviour (Joyce 1966, 1972) 

$(k) = (Ak)'+O(k')), (15) 

with (5 = 2 for finite range interactions and 5 = min(2, c) for inverse power law interac- 
tions of the form 

4 4  - 0 > 0. (16) 

The length A may be identified as the range or scale of the interaction. For d < (5 the 
spherical model has no transition so we restrict attention to d/5 > 1.  From the definition 
(7) we then obtain, by simple geometric considerations, the result 

W(2) = WZd'd + O(zd") (17) 

w = vdK/(271A)d (18) 

where 

and V, is the volume of a d-dimensional unit sphere. 
Inserting (17) in the expression (13) for Q(p),  we see that as Re(p) decreases, the inte- 

gral on the right-hand side of (13) diverges at Re@) = 1 -d/C. Straightforward analytical 

t This procedure is used by Barber and Fisher (1973). 
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continuation then gives 

Q(p)  = w2P- +d’a( 1 - p ) / ( p  - 1 + d/8) + (1 - p )  ( W ( Z )  - W Z ~ ’ ‘ ) Z ~ -  ’ dz P 
+ AW(zi)zf-’. 

L 

The remaining integral is now convergent for Re(p) > 1 - d/8 - b, where b = min(2,0/2) 
- 1 for 0 > 2 and b = min(2,2/5)- 1 for 0 < 2. 

Under the restriction 1 < d/8 < 2, the first singularity of 4 ( p )  which contributes to 
(14) appears at p = 1 -d/5, as is obvious from (12) and (19). Evaluation of the residue 
at this simple pole, using (14) and (1 8), gives 

f ( x )  x 2Qd,aI/,A-d~dia- ‘d/8, (1 < d/8 < 2) (20) 

where the universal parameter Qd,a is defined by 

We may now use (10) which, on integration with respect to x ,  gives, in leading order 
in x ,  the result 

A treatment of (9) completely analogous to the treatment of (10) gives 

(23) 
d 

R(X) X R(O) - 2Qd,,- V,A-dXdia- ’ 
d - 8  

to leading order in x. 

be found, which utilizes the properties of Bose-Einstein functions. 
In the article by Joyce (1972) an alternative way of deriving (23) and hence (22) can 

2.3. Scaling form of the quantity Z 

We insert (23) into ( 5 )  to obtain 

R(0)’tx’ + h2 d 
X 2Qd,a-KA-*, 

R(O)xd‘5 + d-8  

where we have utilized the notation 

The direction of approach to the critical point may be described by the parameter 

7 = R(O)’th-’[x(t, h)]’. (26) 
On the critical isotherm we have 7 = 0, whereas for h = 0, t -+ 0’ we have T = CO. A 
one-to-one correspondence between 7 and the usual scaling combination of variables 
t / lhl l /A is given in appendix 1. 
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Substitution for h2 in (22) through (24) and the definition (26) gives the result 

where we have used (1 )  with 

ps = va-l. (28) 

From this result we see that, provided we are able to identify Ax- 'Ib as the correla- 
tion length, the combination 2 is universal, ie independent of the strength and details 
of the interaction (other than d and 6) and dependent only on the scaled direction of 
approach to the critical point. Accordingly we turn to a discussion of the correlation 
function. 

3. Correlation function 

The two-point correlation function is given by (Joyce 1972) 

K ( ~ z ) ~  r(r, K, h) = - J expi - ik . r ) / ( x  + +(k)). (29) 

If we take the lattice Fourier transform and use the expansion (15), this gives, 

l /f(k,  K, h) = T/,Kx[l +(Ax-~ ' "~ ) '+O(~ ' ) ] .  (30) 

In the case of finite-range interactions the quantity Ax-"2 is by definition (Fisher 1964, 
Fisher and Burford 1967) equal to the effective correlation length, t, , determined by the 
second moment of the correlation function (see appendix 2, (A2.9)). In leading order 
in x, ie on approaching the critical point, tl becomes equal to the true correlation 
range, to, (Joyce 1972), which determines the exponential decay of T(r, K, h) (Fisher 
1964). 

For inverse power law interactions of the form (16) it is clear that the true correla- 
tion length to is an inappropriate concept. However, for U < 2 the second moment 
correlation length t1 is also divergent. Nevertheless, the correlation lengths t p ,  defined 
via moments of order 0 < 2p -= U, do exist. In the appendix 2 we show that in this case an 
appropriately defined 6th moment correlation length, E ,  is, up to a universal constant 
depending only on d and 6, indeed equal to Ax-"". This completes our derivation. 

4. Discussion 

In order to compare our results with the data of Stauffer et a1 (1972) we calculate the 
quantity 

X, = (2-a)(l-a)(-a)Z(oo), (31) 

which corresponds to their parameter X .  We specialize to the case of short-range 
interactions and three dimensions. Using a generalized definition of the specific heat 
exponent a (Fisher 1967) we have (Joyce 1972) 

(32) a = (d - 26)/(d - 6) 
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which in our case gives a = - 1. Thus we find 

X ,  = ( 4 ~ ) - '  = 0.079577.. . . (33) 

This value may be compared with 

X I  = ( 2 ~ ) - '  = 0.1591549.. . , 
X1 = 0.0165f0.0001, 

(Ising, d = 2), 

(Ising, d = 3), 

X 3  = 0.076+0*002, (Heisenberg, d = 3). (34) 

These values are taken from the paper of Stauffer et a1 (1972) where detailed references 
are given. One would expect X 3  for the d = 3 Heisenberg model to lie between the values 
X 1  for the Ising model (n = 1 )  and X ,  for the spherical model (n -+ CO). The uncertainty 
in the numerical result allows only for a surprisingly small difference between the 
Heisenberg and spherical models. 

On the critical isotherm we may calculate the quantity 

Y E X h 2 p  = -Z(0)(6+ l)/S2 (35) 

where j !  is the reduced (dimensionless) isothermal susceptibility per unit volume. For 
three dimensions and finite-range interactions one obtains, with 6 = 5 (for a definition 
of the critical exponent 6 see Fisher 1967) 

Y, = ( 2 0 ~ ) - '  = 0.015915.. . . (36) 

This may be compared with values for the king model in two and three dimensions, 
which follow from the second moment correlation length and the susceptibility on the 
critical isotherm, calculated by Tarko and Fisher (1973a, b, Tarko 1974), 

Y1 = 0.00383f0.00013, 

Y1 = 04044 f0.0004, 

(d = 2, square), 

(d = ~ , s c ) ,  

Y1 = 0.0046 f 0.0006, (d = 3 , ~ c c ) .  (37) 
The agreement between the sc and BCC values represents an explicit test of the Stauffer 
et a1 hypothesis as extended to the magnetic field dependence. 

In (27) 2 has been calculated for a Bravais lattice. However, the results for the Ising 
models, mentioned in the introduction, suggest that (27) is most probably also inde- 
pendent of this aspect of the lattice structure. 

Finally we conclude that for the spherical model the hypothesis of Stauffer et a1 
(1972) holds true as a special case of the universality of Z(T)  for 1 < d / 5  < 2. However, 
we should also observe that for d / 5  > 2 there is still a universal quantity Z(o0). But in this 
case the singular terms are dominated by analytic ones which in fact, determine the 
leading asymptotic critical behaviour and, as well known, yield mean-field exponents, 
For integral d/5 there are also logarithmic corrections in the parameter x, which we 
have not discussed explicitly. Finally, we see from (32), that 'accidental' analyticity of 
the leading singular part of F, occurs for integral values of d/(d-5)  when d/5 < 2. 
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Appendix 1. Identification of a scaling variable 

Elimination of the variable x in (24) through (26) gives 
t/(h(2(d-')/(d+@ = ~ 7 / ( 1  + 7)25/(d+') 

with 

(Al.1) 

(A 1.2) 

The left-hand side of (Al . l )  corresponds to the usual scaling combination of variables 
t/lhJ'/* with 

A = $+a/(d-C). (A1.3) 

Since 25/(d +5) c 1, equation (Al.1) provides a one-to-one correspondence between the 
variables t/Ihl1'* in the interval (- CO, CO) and T in the interval ( -  1 , ~ ) .  From (27), (1) 
and (24), (26) one obtains for the free energy the expression 

d D = (2Qd,bR(0)- KA-d)2'/(d+')R(0)-2. 
d - 5  

where the specific heat exponent a is given by (32) and 

(A1.4) 

(A1.5) 

Since (A l . l )  provides a universal relation between 7 and D-lt/lhl'/A the result (A1.4) can 
be written as 

F, x FotZ-""'t/lhl''") (A1.6) 

where 4(x) is a universal function determined by d and 5, with &CO) = 1. This is one of 
the standard scaling forms for the free energy. 

The parameter T corresponds to the quantity Y,  , which is discussed in the paper by 
Joyce (1972). The connection is 

7 = &[Y*(DAh/ltlA)]-2. (A1.7) 

Appendix 2. Correlation moments for long-range interactions 

Following Theuman (1970) we calculate an angular average of T(r, K ,  h) in (29) and 
take a continuous approximation for the lattice. This is justified near the critical point 
and yields 

(A2.1) 

where Jd/2 - l(z) is a Bessel function of first kind and CA, is proportional to T and de- 
pends on the lattice. As before A is defined in (1 5). We use the truncated expansion (1 5) 
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and the usual definition K = x'/'/A and change variables t o y  = k/K which then gives 

r(r, K ,  h )  = CKd-" -a(Kry ) ' -d i2dad /2 -  i ( W Y ) .  (A2.2) 

The integral is now over a volume similar to the Brillouin zone with all lengths scaled 
by the factor K -  '. For the Bessel function we may utilize the integral representation (see 
eg Abramowitz et al 1970) 

i 1:y 

J,(z) = - (c < 0,z > 0). (A2.3) 

Interchange of the orders of integration subject to the condition 2c > -d then leads to 
c +  im 

r(r, K ,  h )  = cd-5- r(-t) ( ~ r / 2 ) ~ ' J  dyy2'l(1 +y'). (A2.4) 2ni J c - i m  dtT(d/2+t) 

Since we are interested in the limit K 4 0, we can approximate the y integral by extending 
the range of integration over the whole y space, provided we impose the additional 
constraint 2c < -d + 8. After performing this integral we are left with 

(A2.5) 
c + i m  

r(r, K , h )  = C1d-'- 
2ni 

The path of integration can now be ch6sen to satisfy - d -8 c 2c < - d + 5, since the 
singularity of the reciprocal sine at 2t = - d cancels against the zero of r- '(d/2 + t).  
We now take the qth moment 

m 

M,(K,  h)  = S. r d C q - ' T ( r ,  K ,  h)  dr, q < 5  (A2.6) 

and notice that the orders o f t  and r integrations can be interchanged when we choose 
- d - 5 < 2c < - d - q. Performing the r integral yields 

c + i m  

2ni c - i m  
M,(K, h )  = - > ~ - ' - q  1 d t 2 - " ( a ~ ) ~ ' + ~ + ~ r (  - t )  

x T(d/2+t)sin n-=- (2t+d+q) [ ( 2r:d) ] - I  
(A2.7) 

Finally we move the path of integration to the right and pick up the residues of the 
singularities that are passed. This yields a series of increasing powers of ~ a .  Since we 
are interested in the limit K + 0 we retain only the first term, in which the a dependence 
drops out and yields 

As explained in the text, the second moment M, diverges for 0 < 2 and so we may in- 
troduce the generalized q correlation length, tqI2, defined by (Fisher 1969) 

(A2.9) 

For short-range interactions, 8 = 2, this goes into the usual effective correlation length 
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defined through the second moment: [5J2 = M 2 ( K ,  h) / (2dM0(K,  h)). From (A2.8) we 
then have 

(A2.10) 

In order to avoid the arbitrary q dependence we may define a limiting correlation length, 
E ,  by the relation 

[5q,2]q = ~ - ~ 2 7 r / [ G  sin( - xq/C)T( - q/2)]. 

(A2.11) 

The result (A2.10) and this definition then yield the simple result 

5 x - 1/73 (A2.12) 

(A2.13) 
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